Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Appl Microbiol Biotechnol ; 106(19-20): 6595-6609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121485

RESUMO

Fusarium verticillioides, a well-known fungal pathogen that causes severe disease in maize and contaminates the grains with fumonisin B1 (FB1) mycotoxin, affects the yield and quality of maize worldwide. The intrinsic roles of peroxisome targeting signal (PTS)-containing proteins in phytopathogens remain elusive. We therefore explored the regulatory role and other biological functions of the components of PTS2 receptor complex, FvPex7 and FvPex20, in F. verticillioides. We found that FvPex7 directly interacts with the carboxyl terminus of FvPex20 in F. verticillioides. PTS2-containing proteins are recognized and bound by the FvPex7 receptor or the FvPex7-Pex20 receptor complex in the cytoplasm, but the peroxisome localization of the PTS2-Pex7-Pex20 complex is only determined by Pex20 in F. verticillioides. However, we observed that some putative PTS2 proteins that interact with Pex7 are not transported into the peroxisomes, but a PTS1 protein that interacts with Pex5 was detected in the peroxisomes. Furthermore, ΔFvpex7pex20 as well as ΔFvpex7pex5 double mutants exhibited reduced pathogenicity and FB1 biosynthesis, along with defects in conidiation. The PTS2 receptor complex mutants (ΔFvpex7pex20) grew slowly on minimal media and showed reduced sensitivity to cell wall and cell membrane stress-inducing agents compared to the wild type. Taken together, we conclude that the PTS2 receptor complex mediates peroxisome matrix proteins import and contributes to pathogenicity and FB1 biosynthesis in F. verticillioides. KEY POINTS: • FvPex7 directly interacts with FvPex20 in F. verticillioides. • vThe PTS2 receptor complex is essential for the importation of PTS2-containing matrix protein into peroxisomes in F. verticillioides. • Fvpex7/pex20 is involved in pathogenicity and FB1 biosynthesis in F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Virulência
2.
Sci Rep ; 12(1): 14705, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038611

RESUMO

Trypanosomiases are life-threatening infections of humans and livestock, and novel effective therapeutic approaches are needed. Trypanosoma compartmentalize glycolysis into specialized organelles termed glycosomes. Most of the trypanosomal glycolytic enzymes harbor a peroxisomal targeting signal-1 (PTS1) which is recognized by the soluble receptor PEX5 to facilitate docking and translocation of the cargo into the glycosomal lumen. Given its pivotal role in the glycosomal protein import, the PEX5-PTS1 interaction represents a potential target to inhibit import of glycolytic enzymes and thus kill the parasite. We developed a fluorescence polarization (FP)-based assay for monitoring the PEX5-PTS1 interaction and performed a High Throughput Screening (HTS) campaign to identify small molecule inhibitors of the interaction. Six of the identified hits passed orthogonal selection criteria and were found to inhibit parasite growth in cell culture. Our results validate PEX5 as a target for small molecule inhibitors and provide scaffolds suitable for further pre-clinical development of novel trypanocidal compounds.


Assuntos
Receptores Citoplasmáticos e Nucleares , Trypanosoma , Proteínas de Transporte/metabolismo , Humanos , Microcorpos/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Trypanosoma/metabolismo
3.
J Appl Microbiol ; 132(1): 509-519, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34260798

RESUMO

AIMS: Peroxins Pex5 and Pex7 belong to the peroxisomal import machinery and recognize proteins containing peroxisomal targeting signal (PTS) type 1 and type 2, respectively. This study seeks to characterize these two peroxins in the entomopathogenic fungus Beauveria bassiana. METHODS AND RESULTS: The orthologs of Pex5 and Pex7 in B. bassiana (BbPex5 and BbPex7) were functionally analyzed via protein localization and gene disruption. BbPex5 and BbPex7 were associated with peroxisome and specifically required for PTS1 and PTS2 pathways, respectively, which were demonstrated to be involved in development, tolerance to oxidative stress and virulence. ΔBbPex5 mutant displayed additionally defectives that were undetected in ΔBbPex7 in vegetative growth and resistance to osmotic and cell wall-perturbing stresses. Notably, Woronin body major protein Hex1 with PTS1 linked this organelle to the development and virulence of B. bassiana, which indicates that Woronin body is associated with the roles of PTS1 pathway. CONCLUSION: Both PTS1 and PTS2 pathways are involved in broad physiological process, and the PTS1 pathway acts as a main peroxisomal import pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the functional divergence of different peroxins and improves our understanding of organellar physiology involved in biocontrol potential of the entomopathogenic fungi.


Assuntos
Beauveria , Animais , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insetos , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/genética , Virulência
4.
Fungal Genet Biol ; 157: 103636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742890

RESUMO

Pex7 is a shuttling receptor that imports matrix proteins with a type 2 peroxisomal targeting signal (PTS2) to peroxisomes. The Pex7-mediated PTS2 protein import contributes to crucial metabolic processes such as the fatty acid ß-oxidation and glucose metabolism in a number of fungi, but cellular roles of Pex7 between the import of PTS2 target proteins and metabolic processes have not been fully understood. In this study, we investigated the functional roles of CsPex7, a homolog of the yeast Pex7, by targeted gene deletion in the pepper anthracnose fungus Colletotrichum scovillei. CsPex7 was required for carbon source utilization, scavenging of reactive oxygen species, conidial production, and disease development in C. scovillei. The expression of fluorescently tagged PTS2 signal of hexokinases and 3-ketoacyl-CoA thiolases showed that peroxisomal localization of the hexokinase CsGlk1 PTS2 is dependent on CsPex7, but those of the 3-ketoacyl-CoA thiolases are independent on CsPex7. In addition, GFP-tagged CsPex7 proteins were intensely localized to the peroxisomes on glucose-containing media, indicating a role of CsPex7 in glucose utilization. Collectively, these findings indicate that CsPex7 selectively recognizes specific PTS2 signal for import of PTS2-containing proteins to peroxisomes, thereby mediating peroxisomal targeting efficiency of PTS2-containing proteins in C. scovillei. On pepper fruits, the ΔCspex7 mutant exhibited significantly reduced virulence, in which excessive accumulation of hydrogen peroxide was observed in the pepper cells. We think the reduced virulence results from the abnormality in hydrogen peroxide metabolism of the ΔCspex7 mutant. Our findings provide insight into the cellular roles of CsPex7 in PTS2 protein import system.


Assuntos
Sinais de Orientação para Peroxissomos , Peroxissomos , Colletotrichum , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
Am J Med Genet A ; 185(5): 1504-1508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586206

RESUMO

Peroxisome biogenesis disorders (PBDs) are a group of autosomal recessive disorders caused due to impaired peroxisome assembly affecting the formation of functional peroxisomes. PBDs are caused by a mutation in PEX gene family resulting in disease manifestation with extreme variability ranging from the onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults. Disease causing variations in PEX7 is known to cause severe rhizomelic chondrodysplasia punctata type 1 and PBD 9B, an allelic disorder resulting in a milder phenotype, often indistinguishable from that of classic Refsum disease. This case report highlights the variability of PEX7 related phenotypes and suggests that other than RCDP1 and late onset phenotype similar to Refsum disease, some cases present with cataract and neurodevelopmetal abnormalities during childhood without chondrodysplasia or rhizomelia. This report also underlines the importance of considering PBD 9B in children presenting with neurodevelopmental abnormalities especially if they have congenital cataract.


Assuntos
Catarata/genética , Deficiência Intelectual/genética , Transtornos Peroxissômicos/genética , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Catarata/patologia , Criança , Pré-Escolar , Doenças em Gêmeos/genética , Doenças em Gêmeos/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/patologia , Gêmeos/genética
6.
Genome ; 64(2): 119-137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32191843

RESUMO

Peroxisomes are organelles in eukaryotic cells responsible for processing several types of lipids and management of reactive oxygen species. A conserved family of peroxisome biogenesis (Peroxin, Pex) genes encode proteins essential to peroxisome biogenesis or function. In yeast and mammals, PEROXIN7 (PEX7) acts as a cytosolic receptor protein that targets enzymes containing a peroxisome targeting signal 2 (PTS2) motif for peroxisome matrix import. The PTS2 motif is not present in the Drosophila melanogaster homologs of these enzymes. However, the fly genome contains a Pex7 gene (CG6486) that is very similar to yeast and human PEX7. We find that Pex7 is expressed in tissue-specific patterns analogous to differentiating neuroblasts in D. melanogaster embryos. This is correlated with a requirement for Pex7 in this cell lineage as targeted somatic Pex7 knockout in embryonic neuroblasts reduced survival. We also found that Pex7 over-expression in the same cell lineages caused lethality during the larval stage. Targeted somatic over-expression of a Pex7 transgene in neuroblasts of Pex7 homozygous null mutants resulted in a semi-lethal phenotype similar to targeted Pex7 knockout. These findings suggest that D. melanogaster has tissue-specific requirements for Pex7 during embryo development.


Assuntos
Drosophila melanogaster , Neurônios/citologia , Receptor 2 de Sinal de Orientação para Peroxissomos , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares , Saccharomyces cerevisiae
7.
Dis Model Mech ; 13(1)2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31862688

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Condrodisplasia Punctata Rizomélica/tratamento farmacológico , Plasmalogênios/farmacologia , Compostos de Vinila/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Condrodisplasia Punctata Rizomélica/fisiopatologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Estabilidade de Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptor 2 de Sinal de Orientação para Peroxissomos/fisiologia , Plasmalogênios/química , Plasmalogênios/farmacocinética , Compostos de Vinila/química , Compostos de Vinila/farmacocinética
8.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118609, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751594

RESUMO

The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.


Assuntos
Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Motivos de Aminoácidos , Condrodisplasia Punctata Rizomélica/metabolismo , Condrodisplasia Punctata Rizomélica/patologia , Humanos , Proteínas de Membrana/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/química , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Transporte Proteico
9.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 441-449, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30296498

RESUMO

Proteins harboring peroxisome-targeting signal type-2 (PTS2) are recognized in the cytosol by mobile PTS2 receptor Pex7p and associate with a longer isoform Pex5pL of the PTS1 receptor. Trimeric PTS2 protein-Pex7p-Pex5pL complexes are translocated to peroxisomes in mammalian cells. However, it remains unclear whether Pex5pL and Pex7p are sufficient cytosolic components in transporting of PTS2 proteins to peroxisomes. Here, we construct a semi-intact cell import system to define the cytosolic components required for the peroxisomal PTS2 protein import and show that the PTS2 pre-import complexes comprising Pex7p, Pex5p, and Hsc70 isolated from the cytosol of pex14 Chinese hamster ovary cell mutant ZP161 is import-competent. PTS2 reporter proteins are transported to peroxisomes by recombinant Pex7p and Pex5pL in semi-intact cells devoid of the cytosol. Furthermore, PTS2 proteins are translocated to peroxisomes in the presence of a non-hydrolyzable ATP analogue, adenylyl imidodiphosphate, and N-ethylmaleimide, suggesting that ATP-dependent chaperones including Hsc70 are dispensable for PTS2 protein import. Taken together, we suggest that Pex7p and Pex5pL are the minimal cytosolic factors in the transport of PTS2 proteins to peroxisomes.


Assuntos
Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Animais , Células CHO , Cricetulus , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/fisiologia , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Genetics ; 211(1): 141-149, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389805

RESUMO

Peroxisomes are ubiquitous membrane-enclosed organelles involved in lipid processing and reactive oxygen detoxification. Mutations in human peroxisome biogenesis genes (Peroxin, PEX, or Pex) cause developmental disabilities and often early death. Pex5 and Pex7 are receptors that recognize different peroxisomal targeting signals called PTS1 and PTS2, respectively, and traffic proteins to the peroxisomal matrix. We characterized mutants of Drosophila melanogaster Pex5 and Pex7 and found that adult animals are affected in lipid processing. Pex5 mutants exhibited severe developmental defects in the embryonic nervous system and muscle, similar to what is observed in humans with PEX5 mutations, while Pex7 fly mutants were weakly affected in brain development, suggesting different roles for fly Pex7 and human PEX7. Of note, although no PTS2-containing protein has been identified in Drosophila, Pex7 from Drosophila can function as a bona fide PTS2 receptor because it can rescue targeting of the PTS2-containing protein thiolase to peroxisomes in PEX7 mutant human fibroblasts.


Assuntos
Proteínas de Drosophila/genética , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Acetiltransferases/química , Acetiltransferases/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico
11.
Subcell Biochem ; 89: 287-298, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378028

RESUMO

Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid ß-oxidation.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Mapas de Interação de Proteínas , Animais , Linhagem Celular , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Ratos
12.
Sci Rep ; 8(1): 16014, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375424

RESUMO

Peroxisomal matrix proteins contain either a peroxisomal targeting sequence 1 (PTS1) or a PTS2 that are recognized by the import receptors PEX5 and PEX7, respectively. PEX5 transports the PTS1 proteins and the PEX7/PTS2 complex to the docking translocation module (DTM) at the peroxisomal membrane. After cargo release PEX5 is monoubiquitinated and extracted from the peroxisomal membrane by the receptor export machinery (REM) comprising PEX26 and the AAA ATPases PEX1 and PEX6. Here, we investigated the protein interactions of monoubiquitinated PEX5 with the docking proteins PEX13, PEX14 and the REM. "Click" chemistry was used to synthesise monoubiquitinated recombinant PEX5. We found that monoubiquitinated PEX5 binds the PEX7/PTS2 complex and restores PTS2 protein import in vivo in ΔPEX5 fibroblasts. In vitro pull-down assays revealed an interaction of recombinant PEX5 and monoubiquitinated PEX5 with PEX13, PEX14 and with the REM components PEX1, PEX6 and PEX26. The interactions with the docking proteins were independent of the PEX5 ubiquitination status whereas the interactions with the REM components were increased when PEX5 is ubiquitinated.


Assuntos
Receptor 1 de Sinal de Orientação para Peroxissomos/química , Peroxissomos/química , Mapas de Interação de Proteínas/genética , Transporte Proteico/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Sequência de Aminoácidos/genética , Animais , Química Click , Citosol/química , Citosol/metabolismo , Fibroblastos/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação , Receptor 2 de Sinal de Orientação para Peroxissomos/química , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Sinais de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/genética , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação/genética
13.
J Biochem ; 164(6): 437-447, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204880

RESUMO

A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.


Assuntos
Adenosina Trifosfatases/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Sistemas Especialistas , Células HeLa , Humanos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/química , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/enzimologia , Domínios e Motivos de Interação entre Proteínas , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteólise , Proteômica/métodos , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
15.
J Perinat Neonatal Nurs ; 31(4): 350-357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29068853

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic peroxisome biogenesis disorder with a reported incidence of 1 in 100 000 live births. The 3 genetic subtypes of RCDP are acquired by an autosomal recessive inheritance pattern. RCDP type 1 accounts for greater than 90% of all aggregate cases. Differentiating between the 3 subtypes of RCDP, as well as disorders characterized by similar punctate cartilaginous changes, is essential to guide an appropriate postnatal plan of care. Management strategies are focused toward associated clinical manifestations and require an interdisciplinary approach including ophthalmology, cardiovascular, endocrine, physical and occupational therapy, and neurology. Purposeful and frequent collaboration among all members of the neonatal/pediatric interdisciplinary team is necessary to optimize outcomes for the neonate and the family unit. The purpose of this article is to anticipate the needs of both patients with known and prenatal diagnosis of RCDP type 1 and patients with suspected clinical diagnosis of RCDP type 1 in the immediate neonatal period and to guide the appropriate plan of care. This article presents a case report of type I RCDP, as well as describes genetic influences, symptoms, diagnosis, management, and prognosis.


Assuntos
Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/terapia , Predisposição Genética para Doença , Adulto , Índice de Apgar , Cesárea , Condrodisplasia Punctata Rizomélica/diagnóstico por imagem , Terapia Combinada , Feminino , Humanos , Recém-Nascido , Masculino , Receptor 2 de Sinal de Orientação para Peroxissomos/deficiência , Gravidez , Diagnóstico Pré-Natal , Prognóstico
16.
Rev Chil Pediatr ; 88(4): 511-516, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-28898320

RESUMO

INTRODUCTION: Peroxisomal diseases are a group of monogenic disorders that include defects in peroxisome biogenesis or enzyme dificiencies. Rhizomelic chondrodysplasia punctata type 1 (RCDP1) belongs to the first group, caused by autosomal recessive mutations on PEX7 gene, encoding for PTS2 receptor. The aims of this report are to describe a genetic disease of low prevalence, explaining its main characteristics and the importance of the diagnostic approach and genetic counseling. CASE REPORT: 13-month-old male infant with no medical history, family or consanguinity, demonstrate at birth upper limbs shortening. Surgery intervention at seven months old for bilateral cataract. Growth retardation, psychomotor retardation, minor craniofacial anomalies, rhyzomelic shortened upper limbs and lower limbs lesser degree. Punctata calcifications in patella cartilage. Also fatty acid phytanic and pristanic increased levels. Patient dead at age of 3 years. DISCUSSION: RCDP1 is a rare disease, with a prevalence of 1/100,000. Different mutations of PEX7 gene have been described, with variations in phenotype. The treatment is basically symptomatic and depends on the severity of clinical manifestations. The rhizomelic type has poor prognosis, most patients do not survive before the first decade of live. Genetic counseling is essential because it is consider a 25% risk of recurrence.


Assuntos
Condrodisplasia Punctata Rizomélica/diagnóstico , Condrodisplasia Punctata Rizomélica/genética , Evolução Fatal , Aconselhamento Genético , Humanos , Lactente , Masculino , Receptor 2 de Sinal de Orientação para Peroxissomos/deficiência
17.
Bioessays ; 39(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28787099

RESUMO

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.


Assuntos
Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Animais , Humanos , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
18.
J Pediatr Endocrinol Metab ; 30(8): 889-892, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28742517

RESUMO

BACKGROUND: Rhizomelic chondrodysplasia punctata (RCDP) is a rare peroxisomal disease characterised by punctate calcifications of non-ossified cartilage epiphyseal centres. The main biochemical marker of all RCDP types is a decrease in the levels of plasmalogens. Additionally, the accumulation of phytanic acid can be used as a differential marker between types of RDCP. Due to the biochemical overlap between types 1 and 5 RCDP, a genetic analysis of these genes should be performed in patients to identify the type. CASE PRESENTATION: A 2-month-19-day-old male child presented with symptoms of limited movement and discomfort with movement in the extremities. His sister, who had similar clinical findings, was diagnosed with tetralogy of Fallot and died at 6 months of age. A physical examination revealed an atypical facial appearance, bilateral cataracts, sensitivity to touch in the extremities, shortness in the proximal segments of the long bones, limited movement in both knees and elbows and axial hypotonicity. Laboratory analyses revealed normal ammonia, lactate, plasma and urine amino acids, long chain fatty acids and phytanic acid levels. Rhizomelia, significant metaphyseal expansion, irregularities in the cortex, loss of ossification, fragmented appearance and punctate calcifications in both elbows, both knees and in the femoral epiphysis were seen on the skeletal survey. A homozygote p.L70W (c.209T>G) mutation was found in the PEX7 gene. CONCLUSIONS: Plasma phytanic acid levels can be normal in a patient with type 1 RCDP that develops as a result of a PEX7 gene mutation, as in our case. A molecular genetic analysis and/or fibroblast culture must be conducted in clinically suspicious cases. While no cardiac pathology was found in our case, tetralogy of Fallot was present in his sister with similar clinical findings. The presence of different cardiological phenotypes in the sibling suggested that the genotype-phenotype correlation may not be complete in this disorder.


Assuntos
Condrodisplasia Punctata Rizomélica/genética , Mutação , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Homozigoto , Humanos , Lactente , Masculino , Fenótipo
19.
Immunity ; 47(1): 93-106.e7, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723556

RESUMO

The innate immune response is critical for animal homeostasis and is conserved from invertebrates to vertebrates. This response depends on specialized cells that recognize, internalize, and destroy microbial invaders through phagocytosis. This is coupled to autonomous or non-autonomous cellular signaling via reactive oxygen species (ROS) and cytokine production. Lipids are known signaling factors in this process, as the acute phase response of macrophages is accompanied by systemic lipid changes that help resolve inflammation. We found that peroxisomes, membrane-enclosed organelles central to lipid metabolism and ROS turnover, were necessary for the engulfment of bacteria by Drosophila and mouse macrophages. Peroxisomes were also required for resolution of bacterial infection through canonical innate immune signaling. Reduced peroxisome function impaired the turnover of the oxidative burst necessary to fight infection. This impaired response to bacterial challenge affected cell and organism survival and revealed a previously unknown requirement for peroxisomes in phagocytosis and innate immunity.


Assuntos
Macrófagos/imunologia , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Citocinas/metabolismo , Drosophila melanogaster , Imunidade Inata , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Explosão Respiratória , Transdução de Sinais
20.
Plant Cell Rep ; 36(7): 1027-1036, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28352967

RESUMO

KEY MESSAGE: A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in Arabidopsis. Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of Arabidopsis, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5' and 3' region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxissomos/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...